资源类型

期刊论文 638

会议视频 17

年份

2024 2

2023 35

2022 59

2021 59

2020 43

2019 52

2018 21

2017 15

2016 29

2015 15

2014 38

2013 44

2012 22

2011 27

2010 33

2009 40

2008 25

2007 25

2006 7

2005 14

展开 ︾

关键词

混凝土 16

钢结构 10

三峡工程 8

三峡升船机 4

钢箱梁 4

TRIP钢 3

三塔悬索桥 3

升船机 3

可持续发展 3

混凝土面板堆石坝 3

三点弯曲梁 2

优化 2

低成本 2

关键技术 2

创新 2

压力容器技术 2

发展 2

城镇建设 2

悬索桥 2

展开 ︾

检索范围:

排序: 展示方式:

Development of dimensionless P-I diagram for curved SCS sandwich shell subjected to uniformly distributed

Yonghui WANG, Ximei ZHAI

《结构与土木工程前沿(英文)》 2019年 第13卷 第6期   页码 1432-1445 doi: 10.1007/s11709-019-0566-y

摘要: The curved steel-concrete-steel (SCS) sandwich shell was recently proposed to resist blast loading and it showed better blast resistant performance as compared to flat SCS sandwich shell via developing compressive force along the shell. In this paper, a dimensionless Pressure-Impulse (P-I) diagram was constructed as a convenient tool to predict the damage level of curved SCS sandwich shell subjected to uniformly distributed blast loading. The curved SCS sandwich shell was equivalent to a single-degree-of-freedom (SDOF) system and the equation of motion was established by employing the Lagrange’s equation. To construct the dimensionless P-I diagram, the energy balance method was utilized to yield the pressure and impulse asymptotes and the responses in the dynamic response regime were obtained via employing the SDOF method. Then, the finite element method was employed to validate the developed dimensionless P-I diagram. Finally, the procedures of using the constructed dimensionless P-I diagram to quickly conduct the blast resistant design of curved SCS sandwich shell were presented.

关键词: blast loading     curved steel-concrete-steel sandwich shell     Pressure-Impulse diagram     single-degree-of-freedom method     finite element analysis    

Analysis and design of steel-concrete composite sandwich systems subjected to extreme loads

Kazi Md Abu SOHEL, Jat Yuen Richard LIEW, Min Hong ZHANG

《结构与土木工程前沿(英文)》 2011年 第5卷 第3期   页码 278-293 doi: 10.1007/s11709-011-0120-z

摘要: This paper presents the design guide based on analytical, numerical and experimental investigation of Steel-concrete-steel (SCS) sandwich structural members comprising a lightweight concrete core with density ranged from 1300 to 1445 kg/m subjected to static, impact and blast loads. The performance of lightweight sandwich members is also compared with similar members with normal weight concrete core and ultra high strength concrete core ( = 180 MPa). Novel J-hook shear connectors were invented to prevent the separation of face plates from the concrete core under extreme loads and their uses are not restricted by the concrete core thickness. Flexural and punching are the primary modes of failure under static point load. Impact test results show that the SCS sandwich panels with the J-hook connectors are capable of resisting impact load with less damage in comparison than equivalent stiffened steel plate panels. Blast tests with 100 kg TNT were performed on SCS sandwich specimens to investigate the key parameters that affect the blast resistance of SCS sandwich structure. Plastic yield line method is proposed to predict the plastic capacity and post peak large deflection of the sandwich plates. Finally, an energy balanced model is developed to analyze the global behavior of SCS sandwich panels subjected to dynamic load.

关键词: blast load     composite structure     impact load     lightweight concrete     sandwich plate     J-hook connector    

Layout optimization of steel reinforcement in concrete structure using a truss-continuum model

《结构与土木工程前沿(英文)》 2023年 第17卷 第5期   页码 669-685 doi: 10.1007/s11709-023-0963-0

摘要: Owing to advancement in advanced manufacturing technology, the reinforcement design of concrete structures has become an important topic in structural engineering. Based on bi-directional evolutionary structural optimization (BESO), a new approach is developed in this study to optimize the reinforcement layout in steel-reinforced concrete (SRC) structures. This approach combines a minimum compliance objective function with a hybrid truss-continuum model. Furthermore, a modified bi-directional evolutionary structural optimization (M-BESO) method is proposed to control the level of tensile stress in concrete. To fully utilize the tensile strength of steel and the compressive strength of concrete, the optimization sensitivity of steel in a concrete–steel composite is integrated with the average normal stress of a neighboring concrete. To demonstrate the effectiveness of the proposed procedures, reinforcement layout optimizations of a simply supported beam, a corbel, and a wall with a window are conducted. Clear steel trajectories of SRC structures can be obtained using both methods. The area of ​​critical tensile stress in concrete yielded by the M-BESO is more than 40% lower than that yielded by the uniform design and BESO. Hence, the M-BESO facilitates a fully digital workflow that can be extremely effective for improving the design of steel reinforcements in concrete structures.

关键词: bi-directional evolutionary structural optimization     steel-reinforced concrete     concrete stress     reinforcement method     hybrid model    

Influence of steel corrosion on axial and eccentric compression behavior of coral aggregate concrete

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1415-1425 doi: 10.1007/s11709-021-0786-9

摘要: To study the behavior of coral aggregate concrete (CAC) column under axial and eccentric compression, the compression behavior of CAC column with different types of steel and initial eccentricity (ei) were tested, and the deformation behavior and ultimate bearing capacity (Nu) were studied. The results showed that as the ei increases, the Nu of CAC column decreases nonlinearly. Besides, the steel corrosion in CAC column is severe, which reduces the steel section and steel strength, and decreases the Nu of CAC column. The durability of CAC structures can be improved by using new organic coated steel. Considering the influence of steel corrosion and interfacial bond deterioration, the calculation models of Nu under axial and eccentric compression were presented.

关键词: coral aggregate concrete column     axial compression     eccentric compression     steel corrosion     calculation model    

Moment-curvature relationship of FRP-concrete-steel double-skin tubular members

Mingxue LIU, Jiaru QIAN

《结构与土木工程前沿(英文)》 2009年 第3卷 第1期   页码 25-31 doi: 10.1007/s11709-009-0012-7

摘要: Tests were conducted on 3 specimens to study the flexural behavior of fiber reinforced polymer (FRP)-concrete-steel double-skin tubular members (DSTMs). The strip method was used to calculate the section moment-curvature curves of the 3 specimens and 12 models. A theoretical formula is presented for the flexural strength of DSTMs. The test results show that the tension zone of the specimen FRP tubes was in hoop compression while the compression zone was in hoop tension. The load-carrying capacity did not decrease even when the mid-span deflection reached about 1/24 of the span length. The tests, simulation and theoretical analysis resulted in a simplified formula for the flexural strength of DSTMs and a tri-linear moment-curvature model was expressed as a function of the section bending stiffness for DSTMs.

关键词: fiber reinforced polymer (FRP)     concrete     steel     double-skin tubular members (DSTMs)     moment-curvature curve     flexural strength    

Calculation methods of the crack width and deformation for concrete beams with high-strength steel bars

Jianmin ZHOU, Shuo CHEN, Yang CHEN

《结构与土木工程前沿(英文)》 2013年 第7卷 第3期   页码 316-324 doi: 10.1007/s11709-013-0211-0

摘要: Three groups of concrete beams reinforced with high-strength steel bars were tested, and the crack width and deformation of the specimens were observed and studied. To facilitate the predictions, two simplified formulations according to a theory developed by the first author were proposed. The advantages of the formulations were verified by the test data and compared with several formulas in different codes.

关键词: concrete beam     high-strength steel bar     crack width     deformation    

Cyclic behavior of stiffened joints between concrete-filled steel tubular column and steel beam with

Chunyan QUAN,Wei WANG,Jian ZHOU,Rong WANG

《结构与土木工程前沿(英文)》 2016年 第10卷 第3期   页码 333-344 doi: 10.1007/s11709-016-0357-7

摘要: This paper presented an investigation on a stiffened joint in practical engineering which was between concrete-filled steel tubular column and steel beam with narrow outer diaphragm and partial joint penetration welds. Through the low-frequency cyclic loading test, the cyclic behavior and failure mode of the specimen were investigated. The results of the test indicated the failure mode and bearing capacity of the specimen which were influenced by the axial compression ratio of the concrete-filled tubular column. On the contrary, the inner diaphragm and inner stiffeners had limited impacts on the hysteretic behavior of the joint. There was no hysteresis damage fracture on the narrow outer diaphragm connected to the concrete-filled steel tubular column with partial joint penetration welds. Due to the excellent ductility and energy dissipating capacity, the proposed joint could be applied to the seismic design of high-rise buildings in highly intensive seismic region, but axial compression ratio should be controlled to avoid unfavorable failure modes.

关键词: narrow outer diaphragm     concrete-filled tubular column     joint     inner and outer stiffening     cyclic behavior    

Performance of steel bridge deck pavement structure with ultra high performance concrete based on resin

《结构与土木工程前沿(英文)》 2021年 第15卷 第4期   页码 895-904 doi: 10.1007/s11709-021-0759-z

摘要: This research investigated a pavement system on steel bridge decks that use epoxy resin (EP) bonded ultra-high performance concrete (UHPC). Through FEM analysis and static and dynamic bending fatigue tests of the composite structure, the influences of the interface of the pavement layer, reinforcement, and different paving materials on the structural performance were compared and analyzed. The results show that the resin bonded UHPC pavement structure can reduce the weld strain in the steel plate by about 32% and the relative deflection between ribs by about 52% under standard axial load conditions compared to traditional pavements. The EP bonding layer can nearly double the drawing strength of the pavement interface from 1.3 MPa, and improve the bending resistance of the UHPC structure on steel bridge decks by about 50%; the bending resistance of reinforced UHPC structures is twice that of unreinforced UHPC structure, and the dynamic deflection of the UHPC pavement structure increases exponentially with increasing fatigue load. The fatigue life is about 1.2 × 107 cycles under a fixed force of 9 kN and a dynamic deflection of 0.35 mm, which meets the requirements for fatigue performance of pavements on steel bridge decks under traffic conditions of large flow and heavy load.

关键词: steel bridge deck pavement     ultra-high-performance concrete     epoxy resin     composite structure     bending fatigue performance    

Axial compression tests and numerical simulation of steel reinforced recycled concrete short columns

Hui MA; Fangda LIU; Yanan WU; Xin A; Yanli ZHAO

《结构与土木工程前沿(英文)》 2022年 第16卷 第7期   页码 817-842 doi: 10.1007/s11709-022-0844-y

摘要: To research the axial compression behavior of steel reinforced recycled concrete (SRRC) short columns confined by carbon fiber reinforced plastics (CFRP) strips, nine scaled specimens of SRRC short columns were fabricated and tested under axial compression loading. Subsequently, the failure process and failure modes were observed, and load-displacement curves as well as the strain of various materials were analyzed. The effects on the substitution percentage of recycled coarse aggregate (RCA), width of CFRP strips, spacing of CFRP strips and strength of recycled aggregate concrete (RAC) on the axial compression properties of columns were also analyzed in the experimental investigation. Furthermore, the finite element model of columns which can consider the adverse influence of RCA and the constraint effect of CFRP strips was founded by ABAQUS software and the nonlinear parameter analysis of columns was also implemented in this study. The results show that the first to reach the yield state was the profile steel in the columns, then the longitudinal rebars and stirrups yielded successively, and finally RAC was crushed as well as the CFRP strips was also broken. The replacement rate of RCA has little effect on the columns, and with the substitution rate of RCA from 0 to 100%, the bearing capacity of columns decreased by only 4.8%. Increasing the CFRP strips width or decreasing the CFRP strips spacing could enhance the axial bearing capacity of columns, the maximum increase was 10.5% or 11.4%, and the ductility of columns was significantly enhanced. Obviously, CFRP strips are conducive to enhance the axial bearing capacity and deformation capacity of columns. On this basis, considering the restraint effect of CFRP strips and the adverse effects of RCA, the revised formulas for calculating the axial bearing capacity of SRRC short columns confined by CFRP strips were proposed.

关键词: steel reinforced recycled concrete     CFRP strips     short columns     axial compression behavior     recycled aggregate concrete    

Behaviors of recycled aggregate concrete-filled steel tubular columns under eccentric loadings

Vivian W. Y. TAM, Jianzhuang XIAO, Sheng LIU, Zixuan CHEN

《结构与土木工程前沿(英文)》 2019年 第13卷 第3期   页码 628-639 doi: 10.1007/s11709-018-0501-7

摘要: The paper investigates the behaviors of recycled aggregate concrete-filled steel tubular (RACFST) columns under eccentric loadings with the incorporation of expansive agents. A total of 16 RACFST columns were tested in this study. The main parameters varied in this study are recycled coarse aggregate replacement percentages (0%, 30%, 50%, 70%, and 100%), expansive agent dosages (0%, 8%, and 15%) and an eccentric distance of compressive load from the center of the column (0 and 40 mm). Experimental results showed that the ultimate stresses of RACFST columns decreased with increasing recycled coarse aggregate replacement percentages but appropriate expansive agent dosages can reduce the decrement; the incorporation of expansive agent decreased the ultimate stresses of RACFST columns but an appropriate dosage can increase the deformation ability. The recycled coarse aggregate replacement percentages have limited influence on the ultimate stresses of the RACFST columns and has more effect than that of the normal aggregate concrete-filled steel tubular columns.

关键词: concrete filled steel tubes     recycled aggregate concrete     columns     expansive agent     eccentric load    

Flexural behavior of high-strength, steel-reinforced, and prestressed concrete beams

Qing JIANG, Hanqin WANG, Xun CHONG, Yulong FENG, Xianguo YE

《结构与土木工程前沿(英文)》 2021年 第15卷 第1期   页码 227-243 doi: 10.1007/s11709-020-0687-3

摘要: To study the flexural behavior of prestressed concrete beams with high-strength steel reinforcement and high-strength concrete and improve the crack width calculation method for flexural components with such reinforcement and concrete, 12 specimens were tested under static loading. The failure modes, flexural strength, ductility, and crack width of the specimens were analyzed. The results show that the failure mode of the test beams was similar to that of the beams with normal reinforced concrete. A brittle failure did not occur in the specimens. To further understand the working mechanism, the results of other experimental studies were collected and discussed. The results show that the normalized reinforcement ratio has a greater effect on the ductility than the concrete strength. The cracking- and peak-moment formulas in the code for the design of concrete (GB 50010-2010) applied to the beams were both found to be acceptable. However, the calculation results of the maximum crack width following GB 50010-2010 and EN 1992-1-1:2004 were considerably conservative. In the context of GB 50010-2010, a revised formula for the crack width is proposed with modifications to two major factors: the average crack spacing and an amplification coefficient of the maximum crack width to the average spacing. The mean value of the ratio of the maximum crack width among the 12 test results and the relative calculation results from the revised formula is 1.017, which is better than the calculation result from GB 50010-2010. Therefore, the new formula calculates the crack width more accurately in high-strength concrete and high-strength steel reinforcement members. Finally, finite element models were established using ADINA software and validated based on the test results. This study provides an important reference for the development of high-strength concrete and high-strength steel reinforcement structures.

关键词: high-strength steel reinforcement     high-strength concrete     flexural behavior     crack width    

Study on the interfacial shear behavior of steel reinforced concrete (SRC) members with stud connectors

Zihua ZHANG,Junhua LI,Lei ZHANG,Kai YU

《结构与土木工程前沿(英文)》 2014年 第8卷 第2期   页码 140-150 doi: 10.1007/s11709-014-0250-1

摘要: Statically push-out tests of 20 steel reinforced concrete short columns (SRCSC) with stud connectors on the surface of shape steel after fire and two SRCSC under ambient temperature were carried out, in order to study the failure mode, load-slip relationship and the interfacial shear transfer of SRC members after fire. Experimental results show that the typical failure modes and load-slip curves of SRCSC after fire are almost the same as the case under ambient temperature. The interfacial shear transfer of SRCSC declines exponentially not only with the increase of the peak temperature the specimen experienced but also with the increase of the peak temperature duration. The interfacial shear transfer of the specimens with studs arranged at the steel web is much higher than those with studs arranged at the steel flange. Empirical formulas of SRCSC interfacial shear transfer after fire are proposed, and the calculated results generally agree well with the experimental results.

关键词: steel reinforced concrete (SRC)     short column     stud connector     after fire     interfacial shear transfer    

Fatigue evaluation of steel-concrete composite deck in steel truss bridge——A case study

Huating CHEN; Xianwei ZHAN; Xiufu ZHU; Wenxue ZHANG

《结构与土木工程前沿(英文)》 2022年 第16卷 第10期   页码 1336-1350 doi: 10.1007/s11709-022-0852-y

摘要: An innovative composite deck system has recently been proposed for improved structural performance. To study the fatigue behavior of a steel-concrete composite bridge deck, we took a newly-constructed rail-cum-road steel truss bridge as a case study. The transverse stress history of the bridge deck near the main truss under the action of a standard fatigue vehicle was calculated using finite element analysis. Due to the fact that fatigue provision remains unavailable in the governing code of highway concrete bridges in China, a preliminary fatigue evaluation was conducted according to the fib Model Code. The results indicate that flexural failure of the bridge deck in the transverse negative bending moment region is the controlling fatigue failure mode. The fatigue life associated with the fatigue fracture of steel reinforcement is 56 years. However, while the top surface of the bridge deck concrete near the truss cracks after just six years, the bridge deck performs with fatigue cracks during most of its design service life. Although fatigue capacity is acceptable under design situations, overloading or understrength may increase its risk of failure. The method presented in this work can be applied to similar bridges for preliminary fatigue assessment.

关键词: Fatigue assessment     composite bridge deck     rail-cum-road bridge     fatigue stress analysis     Model Code    

Stress-strain relationship of recycled self-compacting concrete filled steel tubular column subjected

Feng YU, Cheng QIN, Shilong WANG, Junjie JIANG, Yuan FANG

《结构与土木工程前沿(英文)》 2020年 第14卷 第3期   页码 760-772 doi: 10.1007/s11709-020-0618-3

摘要: As a typical compression member, the concrete-filled steel tube has been widely used in civil engineering structures. However, little research on recycled self-compacting concrete filled circular steel tubular (RSCCFCST) columns subjected to eccentric load was reported. In this study, 21 specimens were designed and experimental studies on the stress-strain relationship of were carried out to study the mechanical behaviors. Recycled coarse aggregate replacement ratio, concrete strength grade, length to diameter ratio and eccentric distance of specimens were considered as the main experimental parameters to carry out eccentric compression tests. The corresponding stress-strain relationship curves were used to analyze the influence of concerned parameters on eccentric load-bearing capacity of RSCCFCST columns. The experimental results show that the strain of the eccentric compression stress-strain curves increase with the increase of recycled coarse aggregate replacement ratio and concrete strength grade. With increase of eccentric distance, the ductility of specimens increases while the bearing capacity decreases. Moreover, a phenomenological model of RSCCFCST columns is proposed, which exhibits versatile ability to capture the process during loading. The present study is expected to further understanding the behaviors and to provide guidance of RSCCFCST columns in design and engineering applications.

关键词: concrete filled circular steel tubular columns     recycled self-compacting concrete     eccentric compression     recycled coarse aggregate replacement ratio     stress-strain relationship    

Theoretical study on the confine-stiffening effect and fractal cracking of square concrete filled steel

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1317-1336 doi: 10.1007/s11709-021-0763-3

摘要: Tension stress in steel-concrete composite is widely observed in engineering design. Based on an experimental program on tension performance of three square concrete-filled tubes (SCFT), the tension theory of SCFT is proposed using a mechanics-based approach. The tension stiffening effect, the confining strengthening effect and the confining stiffening effect, observed in tests of SCFTs are included in the developed tension theory model. Subsequently, simplified constitutive models of steel and concrete are proposed for the axial tension performance of SCFT. Based on the MSC.MARC software, a special fiber beam-column element is proposed to include the confining effect of SCFTs under tension and verified. The proposed analytical theory, effective formulas, and equivalent constitutive laws are extensively verified against three available tests reported in the literature on both global level (e.g., load-displacement curves) and strain level. The experimental verification proves the accuracy of the proposed theory and formulations in simulating the performance of SCFT members under tension with the capability to accurately predict the tensile strength and stiffness enhancements and realistically simulate the fractal cracking phenomenon.

关键词: square concrete filled tubes     confine-stiffening     confine-strengthening     fractal cracking     fracture    

标题 作者 时间 类型 操作

Development of dimensionless P-I diagram for curved SCS sandwich shell subjected to uniformly distributed

Yonghui WANG, Ximei ZHAI

期刊论文

Analysis and design of steel-concrete composite sandwich systems subjected to extreme loads

Kazi Md Abu SOHEL, Jat Yuen Richard LIEW, Min Hong ZHANG

期刊论文

Layout optimization of steel reinforcement in concrete structure using a truss-continuum model

期刊论文

Influence of steel corrosion on axial and eccentric compression behavior of coral aggregate concrete

期刊论文

Moment-curvature relationship of FRP-concrete-steel double-skin tubular members

Mingxue LIU, Jiaru QIAN

期刊论文

Calculation methods of the crack width and deformation for concrete beams with high-strength steel bars

Jianmin ZHOU, Shuo CHEN, Yang CHEN

期刊论文

Cyclic behavior of stiffened joints between concrete-filled steel tubular column and steel beam with

Chunyan QUAN,Wei WANG,Jian ZHOU,Rong WANG

期刊论文

Performance of steel bridge deck pavement structure with ultra high performance concrete based on resin

期刊论文

Axial compression tests and numerical simulation of steel reinforced recycled concrete short columns

Hui MA; Fangda LIU; Yanan WU; Xin A; Yanli ZHAO

期刊论文

Behaviors of recycled aggregate concrete-filled steel tubular columns under eccentric loadings

Vivian W. Y. TAM, Jianzhuang XIAO, Sheng LIU, Zixuan CHEN

期刊论文

Flexural behavior of high-strength, steel-reinforced, and prestressed concrete beams

Qing JIANG, Hanqin WANG, Xun CHONG, Yulong FENG, Xianguo YE

期刊论文

Study on the interfacial shear behavior of steel reinforced concrete (SRC) members with stud connectors

Zihua ZHANG,Junhua LI,Lei ZHANG,Kai YU

期刊论文

Fatigue evaluation of steel-concrete composite deck in steel truss bridge——A case study

Huating CHEN; Xianwei ZHAN; Xiufu ZHU; Wenxue ZHANG

期刊论文

Stress-strain relationship of recycled self-compacting concrete filled steel tubular column subjected

Feng YU, Cheng QIN, Shilong WANG, Junjie JIANG, Yuan FANG

期刊论文

Theoretical study on the confine-stiffening effect and fractal cracking of square concrete filled steel

期刊论文